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Chapter 1 Introduction

1.1 Beam Buckling Strength

The flexural capacity of beams with large unbraced lengths is often
limited by a mode of failure known as lateral torsional buckling. Lateral
torsional buckling generally involves both an out-of-plane displacement and
a twist of the beam cross-section as shown in Figure 1.1. Timoshenko (1960)
presented the following equation for the elastic critical buckling moment of

a doubly-symmetric beam failing by lateral torsional buckling.

M, = %\,EIYGJ . lz_iféih_z (1.1)
where L = unbraced length, E = modulus of elasticity,‘ I, = weak axis
moment of inertia, G = shear modulus, J = St. Venant’s torsional constant,
and & = distance between flange centroids. Equation 1.1 is applicable to
beams where the twist and lateral displacement at the beam ends are
prevented. ‘

The first term under the radical denotes St. Venant torsional resistance
of the cross-section while the second term is related to the warping torsional
resistance. The unbraced length used in this equation should be the distance
between points of full lateral support. ~ When a beam is subject to aloading
other than uniform moment, the maximum moment capacity may be
significantly greater than that given by Equation 1. 1 For this reason, a

modifying factor can be applied to adjust for portions of the beam that are

1
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Figure 1.1 - Geometry of Buckled Beam

subject to a lower momént. While many methods have been presented for the
determination of the moment gradient modifier, the AISC-LRFD (second
edition), recommends that this factor, known as the C, factor, be calculated

using the following equation;

o - 12.5M
b 2.5M,, + 3M, + 4M,, + 3M,

(1.2)

where M. = maximum moment on span, M, = moment at 1/4 span, M, =
moment at 3/4 span, M, = moment at mid-span (all moments are taken as
positive). This equation appears in a modified form in Kirby and Nethercot
(1979) and will also appear in the second edition of the AISC-LRED
specification.

Kitipornchai and Richter (1978) examined the influence of load height
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and concluded that in general the buckling strength of a beam ié significantly
increased when loads act below the shear center and significantly reduced
when loads act above the shear center. Adjustments to account for the effects
of load height can be found in Bleich (1978) and the SSRC Guide (1988).

1.2 Beam Bracing

In practice, beams are braced in a variety of ways in order to increase
their buckling strehgth Braces can be placed continuously along the length
of a beam as in the case of a floor system, or they can be placed at discrete
intervals. In some cases, bracmg of bearns may be provided by another part
of the load-carrying system such as a slab, secondary stringer, or purlin.

The effectiveness of a brace is determined by its ability to prevent twist
of the cross-section. For this reason a brace should be placed at the point
where it will best counteract the 'twisting of the cross-section. For the brace
to be effective in preventing twist, it must possess not only the required
strength but also a definite minimum stiffness. Historically, the determination
of these requirements has been left to engineering judgement. Common
practice to determine the required brace strength is to design the brace for
two percent of the axial force in the compression zone of the beam. While
the two percent rule usually provides sufficient strength in the brace, it does
not guarantee that the brace will provide sufficient stiffness to raise the
buckling load of the critical member to the desired level.

Bracing can be categorized into two main types, lateral bracing and
torsional bracing. Lateral bracing increases the buckling strength of a
member by restraining the lateral movement of the beam. Since most

buckling problems involve twisting about a point near or below the tension
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flange as shown in Figure 1.1, lateral bracing is most efficient when placed at.
the compress1on flange of the member. Figure 1.2 shows the relationship
between M, and brace stiffness for a lateral brace at mid-span placed at
either the centroid or the top flange. For full or complete bracing, a top
flange brace stiffness of 10 k/in is required to reach the maximum moment
associated with buckling between the braces, M «/M, = 3.6, where M, is the
buckling capacity with no brace. If the lateral brace is at the centroid instead
of the top flange, an eighteen fold increase in brace stiffness is required to
reach the same moment. Figure 1.2 also shows the effect of cross-section -
distortion on the stiffness requirements for braces placed at the centroid,
While distortion does not significantly effect the stiffness requirements of
braces placed at the compression flange, it will significantly increase the
required stiffness for braces placed at the centroid. When the brace is placed
at a distance below the top flange, the compression flange can move laterally

by distorting the web as shown in Figure 1.3.
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Historically, requirements for full lateral bracing have been determined
using a simple model presented by Winter (1960). His model was developed
for elastic column buckling and therefore can only be used to determine the
required strength and stiffness of an ideal lateral brace attached at the
compression flange. The ideal stiffness is defined as the stiffness required to
force the member to buckle between the brace points. Table 1.1 shows a
summary of Winter’s ideal stiffness requirements where P, is the Euler
buckling load of the compression flange between brace points and ¢ is the

distance between brace points.

Number of Evenly Required Stiffness
Spaced Braces for Ideal Bracing
1 2Pep
2 3 Pep
3 ) 341 Pefe
4 3.63 Pe/fe
Continuous Bracing 4.0 Pef

* Table 1.1 - Lateral Bracing Stiffness Requirements

Winter has shown that 1mt1a1 imperfections increase the ideal brace
stlffness of a column by a factor of (1+ A,/A) where A _ is the magnitude of
the initial imperfection and A is the additional deﬂectlon permitted before the
column fails. He also suggested that the required strength of the brace can
be compﬁted by multiplying the brace stiffness by (A, + A). Typical values for
the deflections are A = A, = L/500 which gives a brace strength requ1rement
of 0.8 percent of P, when one brace is used.

When two or more adjacent beams are loaded simultaneously, they
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- may buckle in such a way that the lateral restraint provided by the connection
member is nearly zero (Figure 1.4). The presence of a connection member

-such as a diaphragm 6r bridge deck may, however, provide adequate torsional
bracing to stabilize the beams. Bridge decking in the form of a concrete slab
or wood planks can provide torsional bracing with a stiffness of 6E1/S where
E and I are deck properties and S is the spacing of the girders.

Figure 1.5 shows the behavior of a beam braced torsionally at mid-
span. For a beam with no web distortion, the buckling strength increases with
brace stiffness until it reaches the load associated with the second mode full
bracing. The value of ideal stiffness required to produce this load is not as
sharply defined for torsional brabing as it was with lateral bracing. The lower
curve in this figure shows typical behavior for a torsionally braced beam with
a slender web and no stiffeners. Note that the beam is limited to a much
smaller load even at high values of brace stiffness. | Figure 1.6 shows
schematically the web distortion of a typical slender web beam with a
torsional brace placed at the compression flange. Since many beams do not
possess the required web stiffness, it is often necessary to either attach a
stiffener at locations of torsional bracing or reduce the allowable load of the
member to account for web distortion,

| Figure 1.7 shows the relationship between brace stiffness and critical
load for discrete torsional bra_cing and continuous ' torsional bracing. With
continuous bracing, the critical moment of the member will increase without
limit, until yielding occurs, as the brace stiffness is increased whereas a beam
that is braced at discrete intervals will be limited to the critical inoment
corresponding to buckling between the brace points. For a single brace at

mid-span, the maximum moment is reached when the beam reaches the load
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corresponding to the second mode of buckling. The second mode can be
identified by the "S" shaped curve of the compression flange. The relationship
in Figure 1.7 indicates that a design formula for continuous bracing can be
used for discrete bracing if the maximum moment is limited to the buckling
load between braces. |



Mcr/Mo

v

- Figure 1.4 - Buckled Shape of Bridge Girders

No Web Distortion
2 .
Web Distortion
14
e/ 5,
[ S7x153-17it. ]
0 250 500 ° 750 1000 1250 1500
Single Brace Stiffness (k-in/rad)
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1.3 Previous Approaches to Beam Bracing

Many authors have studied beam bracing requiremenfs and some texts
have given a brief review of bracing requirements. A partial list of these texts
include Salmon and Johnson (1990), Rhodes and Walker (1982), Kirby and
Nethercot (1979), and the SSRC Guide. To provide a brief historical review
of the developrhents in beam bracing, only a few selected papers are
presented.

Flint (1951a) presented experimental data for the bucl;ﬁng of a beam
with a lateral brace located at mid-span on the top flange, bottom flange, or
at the shear center. He also presented graphical solutions for a torsional
brace at mid-span. In his graphs, the critical moment increased to a
maximum mdment of twice the unbraced beam moment at a brace stiffness
of infinity. The inaccuracy of this solutibn can be seen by observing that the
critical moment will increase nearly linearly with brace stiffness until the
second mode "S" shape is reached at a finite brace stiffness. Flint also
indicated that a brace can be effective by only prevénting twist of the crdss-
section while allowing lateral movement to occur.

Flint, (1951b), studied the stability of beams loaded through secondary
members. He examined the restoring effect of a load that is applied through
a relatively stiff secondary member resting on the top flange of the critical
beam. Ignoring the effects of cross-section distortion, Flint found that no
lateral buckling can occur in the first mode unless the beam has an initial bow
- greater than half the ﬂangé width.

- Winter (1960) has shown that an effective column brace must possess

not only the required strength but also a minimum stiffness (Table 1.1). He
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examined discrete column bracing both experimentally and analytically and
concluded that an initial imperfection has the effect of increasing the required
‘brace stiffness by a factor of (1+A,/A).

Taylor and Ojalvo (1966) presented solutions for the buckling capacity
of a beam with continuous torsional bracing or a discrete torsional brace at
mid-span. The beam can be loaded with uniform moment, point loading at
mid-span, or uniform load. The analysis used to determine the critical load
' was an improvement over previ.ous approaches since it included both St.
Venant and warping resistance. The buckling load is obtained by using a

graphical constant m in the following equation:

_ m ' -
M = FELGT (1.3)

The main drawback to this equation is that the constant m must be obtained
‘from a set of graphs corresponding to unique bracing cases. In addition to
graphical solutions, Taylor and Ojalvo indicated that the critical moment of
a beam with continuous torsional bracing under uniform moment can be

determined from the following equation:

2m2 1212 2
BT h . BTLzﬂ; (1.4)
412 2

T
M, = 7?JEH}GJ +
where fi; = continuous torsional brace stiffness (k-in/rad per in. length).
Mutton and Trahair (1973) presented equations for the interaction of
lateral and torsional bracing for beams subject to equal end moments or

central concentrated loads. Their paper gave closed-form equations to find
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the amount‘ of additional torsional bracing needed when a lateral brace is
placed at the centroid of tbe beam cross-section. The effects of cross-section -
distortion were not considered.

Rhodes and Walker ( 1982) presented an overview of bracing
requirements for beams. Graphical solutions were given for beams loaded
with uniform moment, point loads, or uniform load braced by continuous or
discrete braces. Their evaluation of lateral brace attachment heights indicated
that a lateral brace is most effective when placed at the compression flange.
The influence of load height on brace stiffness was examined b_and presented
in graphical form. A method for estimating the torsional restraint with

flexible brace connections was given as follows,

1 1
i S (1.5)
Cyr « ® yeb o,
wherea ., = 0.5E£,t = web thickness, a kr = reduced torsional brace stiffness,

= brace stiffness, and ; = stiffness of connection.

Tong and Chen (1988) have studied the buckling behavior of a simply
supported beam under uniform moment. To apply their equations, the beam
can be braced laterally or torsionally at the mid-span and can be doubly-
symmetric or mono-symmetric. Closed-form solutions for the required
stiffness of ideal bracing for these cases were obtained. For torsional bracing,

the ideal brace stiffness is given by the following equations:
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2 2
_ 2n(8 + ac)z‘/(4 + az) (1.6)
. aC

Kideal -
2
where al = ;?C (1.7)
w

The Tong and Chen solutions do not consider web distortion which often has

a significant effect on the bracing requirements as shown in Figure 1.5.

1.4 Limitations of Current Approaches ,

‘While the approaches mentioned above provide useful information on
the behavior of bracing, they do not proiride practical design guidelines for the
determination of brace requirements under normal design situations. Few
authors have considered the effects of 'cross-section distortion, initial
imperfections, or inelastic behavior. Little work has been done to verify the
behavior of partially effective braces or to determine the effects of cross-

section distortion, initial imperfections and moment gradients experimentally.

1.5 Objectives of Research Program ,

A testing program was undertaken to study experimentally the lateral
torsional buckling of beams with lateral and torsional bracing. The objective
of the program was to develop general design equations and to provide
experimental evidence of their validity. The program involved the testing of
- two 24 foot long W12x14 steel beams with point loads at mid-span. Both
lateral braces and torsional braces were applied at the mid-span of the beams.

Varying levels of initial imperfection and stiffener sizes were studied. Design
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recommendations were developed based on previous literature, finite element

computer studies, and the current experimental work.



Chapter 2 Analytical Program

2.1 General

The analyt1ca1 portion of the research program consisted of two key
components; finite element modeling of the test beam and development of
design equations for beam bracing. The finite element analysis was conducted
to estimate the buckling strength of the test beam and to investigate the
behavior of bracing for cases that were not investigated experimentally.

Bracing design equations for initially straight beams are presented and
compared to results from finite element studies. These equations are

extended in Chapter 5 to cover beams with initial imperfections.

2.2 Description of BASP Computer Program
The finite element program, BASP, an acronym for buckling analysis
of stiffened plates, was developed for use on a personal computer at The
University of Texas at Austin by Choo (1987). The BASP program will
handle many types of restraints including lateral and torsional braces at any
node point along the span. It is limited, however, to elastic modeling of
initially straight beams with loads acting only in the plane of the web. Due
to these limitations, the effects of initial imperfections were not studied using
-the progrém. However, BASP does account for web distortion and was used
extensively in the development of basic design equations for straight beams.
The W12x14 test beam was modeled on the BASP program using the
boundary conditions shown in Figure 2.1. The in-plane supports were
modeled as rollers and out-of-plane displacements, at the ends, were
prevented. In order to more accurately analyze web distortion that may occur

near the brace point, the finite element mesh was broken into finer elements

16
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near the brace locations (Figure 2. 2). This change also provided the proper
node location for attachment of the torsional bracing.

Figure 2.3 shows the buckled shape of a W12x14 beam with no bracing
and Figure 2.4 shows the buckled shape of the same beam with a relatively
stiff brace at mid-span. The curves in these plots show the displacement of
each line of nodes on the beam mesh. The outer curve corresponds to the
nodal line on the top flange while the inner-most curve corresponds to the
bottom flange of the beam. Both the center of twist and the amount of cross-
section distortion can be estimated and compared by careful observation of

these plots.
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2.3 Design Equations for Intermediate Lateral Bracing
’ A general design equation has been developed by Yura (1990), for

discrete or continuous lateral bracing of beams as follows,

PZn2a | |
M., =J(M§ + L)1+ a) (2.1)
2 | .67 '
where A= L By (2.2)
' T EIy
© m2ET
— Y
Py = — (2.3)

where M, is given by Equation 1.1, and B = equivalent continuous lateral
brace stiffness in k/in/in. Since lateral bracing becomes ineffective when
placed at a distance below the compression flange, Equation 2.1 applies only
to compression flange bracing. Analytical studies using BASP have shown
that the effects of cross-section distortion on the effective stiffness of lateral
bracing placed at the compression flange are minimal and can be neglected.

When using Equation 2.1, a finite number of dlscrete lateral braces
along a beam should be converted to an effective continuous lateral brace.
In general, multiple braces can be represénted by summing the stiffness of
- each brace and dividing by the beam length. By comparison to finite element
_ solutions a single discrete brace at mid-span can be represented as a

continuous brace by dividing the brace stiffness by 75 percent of the beam
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length.

When using the continuous bracing analogy, the critical moment must
be limited to the moment corresponding to the deflected shape of the fully-
braced case. In other words, the critical moment cannot exceed the moment
given by Equation 1.1 where ¢ is taken as the longest distance between braces.
Figure 2.5 shdws the maximum moment level that can be reached for various
numbers of equally spaéed braces. Figure 2.6 shows a compafison of
Equation 2.1 and solutions given by the BASP program for a beam under

uniform moment with three equally spaced braces.

(o

| —31
Braces at l/4PoimsmdMidw}‘

7 o0 -1
& | g Braces at Third Points
3 w0
W12x14 - 24 ft,
a0 | F
Single Brace at Midspan
0 , . . _
0 5 50 7 100

Bquivnleﬂt Continuous Brace Stiffness (kfinfin * 1000)
Figure 2.5 - Limiting Values of Critical Moment
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Figure 2.6 - Comparison of Lateral Bracing under Uniform Moment

2.4 Design Equations for Intermediate Torsional Bracing
Taylor and Ojalvo (1973) derived an equation for the critical moment
of a beam under uniform moment with continuous torsional bracing along the

compression flange as follows,

M, = M) + B,ET, (2.4)

where M is given by Equation 1.1, and B = equivalent continuous torsional
brace (k-in/rad per in. length).
This equation can be used to represent multiple discrete torsional

braces by summing the stiffness of each brace and dividing by the beam
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length. For a single brace at mid-span the equivalent continuous brace
stiffness can be found by dividing the brace stiffness of the single brace by 75
percent of the beam length; this is the same procedure that was suggested for
a single lateral brace at mid-span. Figure 2.7 shows a comparison of Equation
2.4 and solutions predicted by the BASP program for a beam uﬁder uniform
moment with three equally spaced braces. Based on the comparisons shown
in Figure 2.6 and 2.7, the design equations for both lateral and torsional
bracing provide an accurate determination of the critical moment of a beam
with multiple discrete braces. _

The analytical studies have shown that the effective stiffness provided
by a torsional brace is greatly reduced by web distortion that may occur at the
brace location. Since many beams do not possess the required web stiffness,
a stiffener must often be aftached at locations of torsional 'bracing. Equation
2.5 can be used to account for the effect of web distortion on the effective
brace stiffness or to determine the required stiffener size to develop the

desired effective torsional stiffness of the beam cross-section.

1
B_T Bb . Bsec . (2.5)

where Beoc = 3.3

3 3 :
B 1.5ht; tbsy (2.6
AT 12 12 |

where B, = attached brace stiffness, B, = total section stiffness, th =
thickness of web, # = depth of web, £, = thickness of stiffener, b, = width of
stiffener. For continuous bracing use 1" in place of 1.5% in Equation 2.6.

When a beam is braced with both lateral and torsional bracing,
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Equations 2.1 and 2.4 can be combined as follows,

2yp2
M, = \J(Mg N PyilA)(l + A) +BTEI_V (2.7)

. Equation 2.7 is an approximation of the interaction between lateral and
torsional bracing. Figure 2.8 compares the interaction given by Equation 2.7
to the interaction predicted by the BASP program. The line labeled "Linear
Interaction" corresponds to the levels of bracing that would be required if

Equation 2.1 and Equation 2.4 were applied independently.
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Figure 2.7 - Comparison of Torsional Bracing under Uniform Moment
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Figure 2.8 - Interaction of Lateral and Torsional Bracing

2.5 Modifications for Moment Diagram Effects and Load Height

When a beam is subject to a loading other than uniform moment, the
maximum moment capacity may be significantly greater than that found by
‘Equation 2.7. For this reason, an amplification factor can be applied to adjust
for portions of the beam that are not subject to the level of moment
determined in the solution for critical uniform moment. For beams with
bracing, the C, factor should be calculated for the unbraced beam and

multiplied by the critical moment determined from Equation 2.7 as follows,

Max = Cp M, ' (2.8)
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where M, = maximum moment at any location, M, = moment determined
from Equation 2.7. , A

For a beam with multiple braces, the critical moment should be limited
~ to the moment corresponding to buckling of the critical span. This can be
determined by calculating the critical moment for each unbraced length
(Equation 1.1), and applying the C, factor associated with that unbraced
length. Figure 2.9 vand 2.10 show comparisons of the design equations to
solutions predicted by the BASP program for a beam with three lateral or
torsional braces and loaded by mid-span point loading at the centroid of the
- beam cross-section. A C, factor of 1.30 was used in the calculation of the
design curves for both figures with the maximum load determined from the
" moment corresponding to buckling between the braces.

The conservativeness of the design equations at high values of brace
stiffness is due to the method used to determine the moment corresponding
to buckling between brace points. This moment was found from the smallest
of the two capacities associated with buckling between different braces. Since
the moment levels are much higher between the mid-span brace and the 1/4
‘'span brace, the middle sections will give the lowest C, factor and thus the
lowest capacity. It is possible to adjust these curves to a higher value of peak
load by accounting for the extra out-of-plane restraint provided to the most
critical portions of the beam from portions of the beam under less load
through the use of effective unbraced length, k2. The design equations shown
in both figures give a conservative estimate of the buckling strength

Comparisons to finite element solutions have shown that the effects of
top-flange loading can be estimated by removing the warping term in the

determination of M,. Figure 2.11 and 2.12 show comparisons of design
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equations to solutions from the BASP progrém. The curves labeled "Design
Equation" in these figures were calculated using a C, factor of 1.30 and
ignoring the warpmg term in the determination of M. The design equatlon '
- curve for lateral bracing shown in Figure 2.11 is unconservative for small
values of bracing. This indicates that additional studies need to be performed
to determine a more accurate determination of the effects of load height.
The de51gn curves for torsional bracing, however, give an accurate estimate

of the buckling strength as shown in Flgure 2.12.
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Figure 2.13 and 2.14 compare the design equations to BASP solutions

for beams with a single brace at mid-span. The equivalent continuous brace
stiffness used in the calculation of the curves labeled "Design Equation" was
found by dividing the brace stiffness by 75 percent of the beam length instead
of the total beam length as was done in the preceding figurés. A G, factor of
1.30 was used and the warping term was ignored in the determination of M,.

Based on these figures, the design equations provide an accurate
determination of the critical load for a beam with multiple braces or a single
brace. Note that in all cases with point loading, the load was applied at a
brace point. During this study, all braces had equal stiffness and equal
spacing. The accuracy of the design equations has not been verified for other

cases.
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Chapter 3 Experimental Program

3.1 General

The experimental progré;m consisted of 76 tests designed to evaluate
the effects of lateral and torsional brace stiffness, brace location, stiffener size,
and initial imperfections on the lateral torsional buckling of steel beams. Two
identical simply supported beams were loaded at Vmid-span as shown in Figure
3.1 until buckling occurred. The buckling load determined from this beam
arrangement was an average buckling load for the two beams. Figure 3.2
shows the overall test setup. | '

Both test beams were taken from the same mill batch of high-strength
steel so that all buckling would occur in the elastic range. The measured
yield strengths of the flange and web were 65 ksi and 69 ksi, respectively.
Figure 3.3 shows the average measured cross-section properties of the two

beams.
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Figure 3.2 - Overall Test Setup
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Calculated Properties
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Figure 3.3 - Average Cross-Section Properties of Test Beam

3.2 Loading and Support System

In the laboratory, gravity type loads are usually applied by using a
testing machine or a firmly supported jack. This technique works well for
structures that displace following the line of action for the loading device.
For structures that are allowed to sway or buckle, the line of action of the
load will no longer be vertical and care must be taken so that the loading
device will not restrain the lateral movement of the test specimen. When a
structure sways, the vertical nature of true gravity load must be approximated.
| In the twin beam setup, the mid-span load was maintained vertical by
the use of a gravity load simulator mechanism shown in Figure 3.4. This
mechanism has been used extensively in the testing of structures permitted to

sway. The design concept of the simulator is given by Yarimci, Yura, and Lu
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(1966) and will not be discussed here. The simulator used in the test setup
could safely maintain a load of 44 kips with a sway of six inches.

- While the mechanism does a very good job of simulating gravity load
it is, however, not perfect. The friction in the bearings produce a slight "lag"
in the realignment of the ram to the vertical position during sway. This effect
was determined experimentally by applying a lateral load to the base of the
loading ram at point o in Figure 3.5 and measuring the corresponding lateral
movement. The value of this restraint was determined at six different load
levels. During the first test, it was found that the friction in the gravity load
simulator produced a sawtooth type load-deflection curve. In order to
minimize this effect, a small vibration motor was attached to the frame of the
load simulator that served to increase the rate at which the ram was realigned
to the vertical position. It was not possible to perform a calibration of the
gravity load simulator with the vibration motors running due to the sensitivity
of the instrumentation.

The effects of non-ideal behavior, such as restraints at the ends of the
beam, were studied using BASP and found to have a significant effect on the
buckling load. In light of this, the friction at the end supports was minimized
by using ball bearing fixtures that would allow axial lengthening of the beam
as well as out of plane rotation at the supports (Figure 3.6). Load was
transferred to the test beams through knife-edges placed between the loading
beam and the test beam (Figure 3.7). The knife edges were placed at the
center of the flange, parallel to the beam span, so that they would not effect
the twist of the test beam. The knife edges were connected to the loading
tube with roller bearings to prevent the addition of significant warpmg

restraint to the test beams from the applied loading.
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Figure 3.4 - Gravity Load Simulator
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Figufe 3.5 - Lateral Stiffness of Gravity Load Simulator Due to Friction
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Figure 3.6 - End Roller Bearings

3.3 Instrumentation

Duﬁng testing, lateral deflections, vertical deflections, flange rotation,
and load were recorded. Lateral deflection measurements were recorded on
both the top and bottom flange at the mid-span and quarter points of each
beam. Vertical deflections were recorded at the mid-span of each beam.
Load was recorded using a load cell located between the ram and loading
tube The load cell had a capacity of 50 kips and a precision of 50 pounds.
A pressure transducer measured the hydranlic pressure in the ram to provide
another measure of load. There was no significant dlfference between load
levels reported by the load cell and those calculuted from the pressure

readings.
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Figure 3.7 - Knife Edges

All deflections were recorded using electronic linear displacement
gauges. To obtain an accurate measure of lateral deflection directly from the
gage readings, the lateral displacement gauges were placed four feet from the
test beam in order to minimize the error due to the vertical component of the
gauge displacement. This resulted in an accuracy of 0.05 inches at the
maximum vertical deflection experienced during testing. Displacement gauges
were connected to the top and bottom flanges of each beam at the quarter-
span, mid-span, and three-quarter span giving a total of 12 lateral
| displacement readings at each lbad level. By placing gauges at both the top
and bottom flanges, the average twist of the cross-section could be calculated

at each gauge location.
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Additional measurements of twist were recorded using two electronic
tilt meters. These meters were located at the mid-span of one beam, one on
the top flange and one on the bottom flange. Since these meters recorded the
tilt of each flange near the brace point, an estimate of the cross-section
distortion was obtained for each test. All displacement and load readings
were recorded using a computer controlled data acquisition unit in which all

data during a load cycle could be recorded within a few seconds.

3.4 Lateral Bracing System

The lateral bracing was provided by a simply supported aluminum bar
with an adjustable overhang (Figure 3.8). Six different levels of stiffness were
provided in this fashion by simply changing the size of the aluminum bar or
the location of the adjustable support. Figure 3.9 shows the lateral bracing
system used in the test setup. The stiffness of the lateral bracing system was
significantly affected by the stiffness of the accompanying supports, so it -was
necessary to obtain the effective stiffness of the bar-support system
experimentally. The measured value of stiffness for each lateral brace

configuration is shown in Table 3.1.



Figure 3.8 - Schematic of Lateral Brace

Lateral Brace Stiffness -
Configuration ' Kips/In
1 . 0.22
2 0.36
3 0.65
4 0.75
5 1.20
6 1.90

Table 3.1 - Measufed Lateral Brace Stiffness
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Figure 3.9 - Lateral Bracing System

3.5 Torsional Bracing

Torsional bracing was provided by connecting a flexible aluminum bar
to each test beam spanning between the two beams. During testing, the
lateral deflection of the test beams forced the aluminum brace into double
curvature as shown in Figure 1.6. Since the brace is bent in double curvature,
the brace stiffness is equal to 6EI/L of the aluminum brace. The torsional
braces were attached six inches on each side of the mid-span of the test beam
to avoid interfering with the loading beam and to provide symmetry. Figure
3.10 shows a typical torsional brace used in the test.
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Fwiwgure 310 q-w'i‘(»)rsional Bracing




43

Figure 3.12 - Brace Fixﬂﬁnlré-(-i‘(\);ﬁi;()nents

The torsional brace attachment fixtures were designed to prevent the
addition of any significant warping restraint to the test béams especially as
they buckled into the second mode shape. This required the brace and
fixtures to provide a high stiffness in the vertical plane while simultaneously
providing little or no restraint in the horizontal plane. Figure 3.11 shows a
'photo of the overall fixture assembly and Figure 3.12 shows the individual
fixture components. Item 1 in Figure 3.12 is the base of the fixture. This was
rigidly attached to the test beam and contained a two inch fixed dowel at the
center. Item 2 was placed over the dowel on Item 1 and was secured with the
use of a bearing nut. Roller thrust bearings were placed between both
contact surfaces formed by the attachment of 1 and 2, The aluminum bracing,

Item 3, was rigidly connected to the fixture by the use of a cover plate (Item
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4). All rotation in the horizontal plane occurred between Item 1 and 2. Each
of the eight brace end fixtures were calibrated and found to vary from 1600
to 3700 k-in/rad with an average stiffness of 2900 kip-in/rad. By repeated
trials, it was found that a large variation in stiffness would occur depending
on the tension that was applied to the bearings in the fixture assembly. Since
measuring the brace fixture stiffness between each test would have been
prohibitive, the average stiffness of 2900 Kip-In/Rad was used for all fixtures.
The total stiffness of the brace-fixture combination was determined from the
sum of the fixture flexibility and the braée flexibility as shown in Equation 3.1.
Based on the original stiffness measurements, the use of the average fixture
stiffness could result in an error of 3% for the lowest level of brace stiffness
and an error of 17% for the highest level of brace stiffness. Thus, the total
stiffness of each brace-fixture combination was calculated using an average
value of 2900 k-in/rad for the fixture stiffness. The total brace stiffness given
in Figﬁre 3.13 was calculated for the bar configuration shown and then

doubled to account for the bracing on each side of the loading tube.

1 1 1
- = + 3.1
B T Bbrace Bf.ixture ( )

fixture

where B = Torsional Brace Stiffness, Borace = Stiffness of Brace Alone, B
= Stiffness of Brace Fixture Alone. |
Many tests were performed with stiffeners placed directly beneath the
brace attachment points. They were made of 11 inch long steel angles bolted
to the web of the test beam. This permitted both the stiffener size and

vertical location of the stiffener to be easily adjusted.



Description Bar Fixure ;:;a"le
| .
No. P inertia Stiffness | Stiffness Stiffness
1 /4" X 84" Bar 0.027 | 27.7 2900
& . 7. .
55.0
2 VU XY | oas | 450 | 2900 88.6
3 — 0.088 ) 2900 17
Tl 90.3 5
3/4" x 1-1/4" Bars
4 > 74 0244 | 250 2900 462
i
5 L 7 0.366 | 375 2900 666
4
6 7 7 0.488 | 501 2900 | 855
7 7 0 0.610 2 2800
%%é %% 626 1030
8 0.732 752 2900 1190

Flgure 3.13 - Adjusted Torsional Brace Stiffness
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Chapter 4 Test Results

4.1 Test Procedure

The experimental program of 76 tests was divided into s'ix groups.
Group A is composed of tests that contained no bracing. Group B is
Acc')mpo'sed of tests with lateral bracing located at mid-span attached to the
compression flange. Group C contains tests with compression flange torsional
bracing located at mid-span as discussed in Chapter 3. Group D contains
results from tests with forced imperfections. Group E contains tension flange
torsional bracing and Group F contains a combination of tension flange and
compression flange torsional bracing. '

The test procedure for each test started with an initial reading of all
gauges. A load of approximately one kip was applied to the beams before the
vibration equipment was activated so that the knife edges would seat in the
grooves on the top flanges of the test beams. Readings were then taken at

a constant increment of about‘ 500 pounds until the load on the beams was
| near the buckling load; the frequency of the readings were then increased.
The number of readings taken at or near the buckling load varied greatly
between tests and can be seen in the load-deflection curves located in
~ Appendix A. During each test, the inclinations’ of the compression and
tension flanges were measured near the brace point. These readmgs were not

taken as frequently since the data were recorded manually.
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4.2 Determination of Critical Load ‘

The lateral torsional buckling load of a beam can be defined as the
load at‘ which the member has zero lateral stiffness. Figure 4.1 shows a
typical load-deflection curve from a test where the beam buckled in the first
mode and Figure 4.2 shows a typical load-deflection curve from a test where
the beam buckled in the second mode. The critical load for these tests is
chéracterized by a horizontal or near horizontal line on the load-deflection
curve. Since the beams buckled in an "S" shépe for all second mode tests, the
mid-span deflection was small or zero for all values of load. The critical load
can also be found from the horizontal line on the load-twist curve as shown
in Figure 4.3. Due to the high yield strength of the W12x14 beam material
(approximately 65 ksi), the large deflections needed to reach the critical load
of the test beam were achieved without yielding.

Alternative methods have been developed to determine the
experimental buckling strength of beams that cannot be loaded to the actual
~ buckling load. Some of the better known procedures for this type of analysis
include techniques presented by Southwell (1932) and Meck (1977). The
Meék Plotting Technique is applied specifically to beams by using two
equations which involve linear relations between functions of the measured
lateral deflection a.nd measured twist. The applied moment is plotted against
the experimental twist and lateral deflection as shown in Figure 4.4. The
~ inverse slopes of the lines of best fit through the data points for these plots

are defined as @ and B where the critical moment is given by

Mcr = \/ap

The initial lateral twist, 8y, and deflection, U, are found from the negative
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horizontal intercepts of the plots shown in Figure 4.4.

Use of the Meck plotting technique for the determination of M, gives
results practically identical to the load level corresponding to a horizontal line
on the load-deflection curve for all tests without bracing. However, the Meck
- plotting technique did not work for tests that contained bracing or where the
load was applied through a flexible loading member. For this reason, the
critical load for all tests was obtained from the horizontal portion of the load-
deflection curve. The Meck Technique was used, however, to verify the
critical load of tests with no bracing as well as to establish the initial

imperfection of each beam.
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Figure 4.4 - Meck Plotting Technique
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4.3 Determination of Initial impeffections

Two types of initial imperfections were studied during the testing
program. The first type of imperfection will be referred to as natural
imperfections. All tests except Group D tests were performed with natural
imperfections obtained by buckling the beams in the first mode beyond their
yield point. Test Al, AS, and A6 in Table 4.1 give values of initial
displacement and initial twist ai mid-span for the three levels of natural
imperfections used during testing. The second type of imperfection will be
referred to as forced imperfections. These were applied at the quarter point
of the beam by displacing the compression flange of the test beam laterally
with a rigid stop and then securing the stop in the displaced position. Tests
D1 through D4 give measured values of initial deflection and initial twist at
the mid-span of the test beams for tests with forced imperfections. All forced
imperfections listed are in addition to the 0.04 inch natural deflection of test
beam Al. |

Test Number Initial Initial
Deflection i Twist
(in) (degrees)
Al 0.04 0.26
AS 0.16 0.01
A6 0.22 0.13
D1 0.26 0.17
D2 0.15 0.07
D3 0.12 0.05
D4 031 0.12

Table 4.1 - Measured Initial Deflection and Twist
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4.4 Test Series A - No bracing

The first test series consisted of six tests with different loading beams.
Test Al was loaded with knife edges between the loading member and the
test beam and can be considered a basically straight beam with no bracing
‘other than the friction in the gravity load simulator. Test A2 had the same
configuration as A1l with a forced imperfection imposed at the quarter point
of one beam. |

The term "tipping effects” describes tests in which the loading beam
was placed directly on the compression flanges of the test beams without the
use of the knife edges. Tests A3 and A4 were performed to study the effects
of the externally applied flange rotation which occurs when the loading
member is placed directly on the compression flanges of the test beams.
Tests AS and A6 were loaded with the original knife edge loading and are
similar to test A1 except for the level of initial imperfection present. Table
4.2 gives a summary of these tests and the corresponding experimental
buckling loads. The reported buckling load is an average of the two test
beams. Tests marked with a plus sign were reproduced to check for
repeatability. With the exception of tests C4 and C29, all duplicate tests gave
a critical load within 6 percent of the original test. Test C4 had a variation

of 28 percent and test C29 had a variation of 51 percent.
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TEST | DESCRIPTION STIFFENER | INITIAL CRITICAL s

No. SIZE IMPERF- LOAD SHAPE
ECTION (KIPS)
(INCHES)

+ Al Knife edge loading NONE . 0.04 1.6 NO
A2 Knife edge loading NONE 045 1.6 NO

+ A3 Tipping Effects NONE 0.04 38 NO
A4 Tipping Effects 2"X1/4" 0.04 6.2 YES

+ AS Knife Edge Loading NONE 0.16 1.6 NO

+ A6 Knife Edge Loading NONE 0.22 1.7 NO

+ Test was repeated

Table 4.2 - Test Series A, No Bracing

4.5 Test Series B Lateral Bracing

The second series of tests as well as all subsequent tests were loaded

using the steel loading beam and knife’ edges as shown in Figure 3.7. All

boundary conditions were the same as Test Series A except that a lateral

brace was added as shown in Figure 3.8 and 3.9. Six levels of lateral bracing

and two levels of initial imperfections were tested. Table 4.3 shows the

amount of lateral bracing attached to the test beams through the bfacing

device and the corresponding critical load per beam.
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TEST BRACE STIFFENER . INITIAL CRITICAL s
NUMBER STIFFNESS SIZE IMPERFECTION LOAD SHAPE
(KIPS/IN) (INCHES) (KIPS)

B1 0.22 47X1/4" 0.22 28 NO
B2 0.75 4"X1/4" 022 49 NO
B3 0.36 aX1/4" 022 30 NO
B4 120 47 X1/4" 022 49 NO
BS 036 4"X1/4" 0.16 37 NO
B6 120 4mX1/4" 0.16 6.1 NO
B7 1.90 4X1/4" 0.16 65 YES
B8 0.65 X1/4" 0.16 5.0 NO
B9 0.65 NONE 0.16 51 NO
B10 1.90 NONE 0.16 65 YES

4.6 Tesf Series C, Compression Flange Torsional Bracing

Table 4.3 - Test Series B, Lateral Bracing

Test Series C consisted of 40 tests with varying levels of torsional brace

stiffness, initial imperfection, and stiffener size. A total of eight levels of

brace stiffness, three levels of initial imperfection, and two stiffener sizes were

tested. Tests were also performed with no stiffener and with the 4"x1/4"

stiffener touching the compression flange at both brace locations, Tests

performed with the stiffeners touching the compression flange are marked

with an asterisk iﬂ the table.

As described in Chapter 3, the torsional bracing was attached to the

compression flange of each test beam with half the indicated amount being

placed six inches on either side of the 'mid-span. Table 4.4 contains a

summary of these tests and the corresponding experimental buckling loads.
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TEST BRACE STIFFENER INITIAL CRITICAL oy
NUMBER STIFFNESS SIZE IMPERFECTION LOAD SHAPE
(K-IN/RAD) (INCHES) (KIPS)
c1 55 NONE 022 29 NO
o) 55 2°X1/4" 0.22 2.9 NO
o< 55 4"X1/47 0.22 29 NO
+ o 89 NONE 022 29 NO
+ s 89 27X1/4" 022 35 NO
+ 6 89 4mX1/4" 022 36 NO
c7 175 NONE 022 44 NO
+ 8 175 2'X1/4" 0.22 44 NO
9 175 4"X1/a" 0.22 45 NO
C10 462 NONE 0.22 48 NO
ci 462 27X1/4" 0.22 52 NO
c12 462 4"X1/4" 0.22 52 NO
c13 666 NONE 0.22 49 NO
cu4 666 2"X1/4" 0.22 54 NO
C15 666 4"X1/4" 0.22 43 NO
c16 855 4"X1/4" 0.22 5.7 NO
+ C17 1030 4"X1/a" 0.22 5.7 NO
c1s 1190 4"X1/4" 0.22 6.0 NO
C19 1190 * 47X1/4 0.22 68 YES
c20 1030 * 4"X1/4" 022 68 YES
c 666 * 4"X1/4" 022 68 YES
c2 462 * 4"X1/4" 022 64 NO
c23 175 * 47X1/4" 022 51 NO
c24 89 * 4mX1/4" 022 33 NO
c25 55 NONE 0.16 29 NO
C26 55 2X1/4" 0.16 29 NO
c27 55 4"X1/4" 0.16 3.0 NO
+ 8 89 NONE 0.04 45 NO
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TEST BRACE STIFFENER INITIAL CRITICAL st
NUMBER STIFFNESS SIZE IMPERFECTION LOAD SHAPE
: (K-IN/RAD) : (INCHES) _(KIPS) :
+ C29 89 2"X1/4" 0.04 4.1 NO
C30 89 4"X1/4" 0.04 5.1 NO
C31 175 NONE 0.04 55 NO
+ C32 175 2"X1/4" 0.04 6.3 YES
+ C33 175 4"X1/4" 0.04 6.5 YES
C34 175 * 4"X1/4" - 0.16 4.1 NO
C35 462 * 4"X1/4" 0.16 6.6 YES
+ C36 462 4"X1/4" 0.16 5.6 NO
+ C37 666 4'X1/4" 0.16 58 NO
C38 855 4"X1/4" 0.16 6.3 NO
C39 1030 4"X1/4" 0.16 6.5 NO
C40 1190 4"X1/4" 0.16 64 NO

* Stiffener Touching Compression Flange
+ Test was repeated

Table 4.4 - Test Series C, Compression Flange Torsional Bracing

4.7 Test Series D, E, and F

Test Series D consists of six tests where the initial imperfection was

applied to the beam by a forced displacement at the quarter span of one

beam. The forced displacement was transferred to the other beam through

the loading tube.

As mentioned in the previous sections, the initial

imperfection reported for all other test series was the natural state of the test

beams due to a previous yielding or manufacturing process. Test Series E

consisted of ten tests similar to those in series C except the torsional bracing
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was attached to the tension flange instead of the compression flange. Test
Series F consisted of 6 tests similar to those in series C except half the
indicated value of torsional bracing was attached to the compression flange
and half was attached to the tension flange. Table 4.5 contains a summary of

these tests and the corresponding experimental buckling loads.
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 TEST BRACE STIFFENER INITIAL CRITICAL S
NUMBER STIFFNESS SIZE IMPERFECTION LOAD SHAPE
(E-IN/RAD) (INCHES) (KIPS)
Forced Imperfections
D1 89 NONE 0.26 36 NO
D2 175 NONE 015 42 NO
D3 175 4"X1/4" 0.12 58 NO
D4 175 4X1/4 031 52 NO
Tension Flange Torsional Bracing
E1 175 NONE 0.22 43 NO
E2 175 * 4X1/4" 0.22 6.6 NO
E3 666 *4"X1/4" 0.22 6.7 YES
E4 666 4"X1/4" 022 68 YES
ES 666 NONE 0.22 46 NO
E6 175 NONE 0.16 38 NO
+ FE7 175 * 47X1/4" 0.16 48 NO
E8 666 * 4" X1/4" 0.16 6.7 YES
E9 666 4"X1/4" 0.16 - 6.7 YES
E10 666 NONE 0.16 48 NO
Combined Compression and Tension Flange Torsional Bracing
F1 - 462 NONE 0.22 6.5 YES
F2 175 NONE 0.22 48 NO
F3 175 4"X1/4" 0.22 4.8 NO
F4 462 NONE 0.16 6.6 YES
F5 175 NONE 0.16 49 NO
F6 175 ax1/4" 0.16 49 NO

* Stiffener Touching Tension Flange
+ Test was repeated

Table 4.5 - Test Series D, E, and F




Chapter 5 Comparison and Discussion of Test Results

5.1 General

Using the test results presented in Chapter 4, the effects of brace
stifﬁneSs, brace location, stiffener size, and initial imperfections on the lateral
buckling of beams will be evaluated. The design equations developed for
straight beams in Chapter 2 will be extended to cover beams with
imperfections. Both natural and forced imperfections will be evaluated. The

effects of to_rsional brace location will also be examined.

5.2 Effect of Imperfections on Lateral Bracing Requirements

Since the design equations for lateral bracing presented in Chapter 2
were previously verified for straight beams, only a correction for imperfections
is needed. As discussed iﬁ Chapter 1, Winter (1960) indicated that initial
imperfections decrease the effectiveness of lateral bracing for columns. He
concluded that the required brace stiffness increased as a linear function of
the initial imperfection. ' |

Figure 5.1 shows a plot of critical load vs. brace stiffness for all tests
with lateral bracing and natural imperfections (Group B). For each level of
brace stiffness, the beam with an imperfection of 0.22 inches gave a lower
buckling load than the beam with an imperfection of 0.16 inches. No test
data were obtained for the beam with an imperfection of 0.04 inches since the
beam was accidentally yielded before any tests were performed.

. Timoshenko (1960) has shown that an unbraced elastic column with an

initial imperfection will ultimately reach the same critical load as the straight

column. He has shown that the deflection at any load level is given by,
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A= P , (5.1)

Since the imperfection does not affect the ultimate buckling load of an
unbraced elastic beam, it can be reasoned that the imperfection reduces the
effective brace stiffness. Based on the test data from Group B, it was
determined that the effect of 1mperfect10ns on laterally braced beams could

be estimated by applying the following equations,

212 ’ -
M, - \'(MZ + P’Z Y1+ 4 (52)

L2 | £7c,B, | (5.3)

N

A=

1

L 1. 1500% | (5.4)
where ; = equivalent continuous lateral brace stiffness (k/in per in. length),
¢ = reduction factor for the imperfection and A, = imperfection value.

Figure 5.2 shows pIots of Equation 5.2 for a beam with three different
levels of initial imperfection. The beam with an imperfection of L/1000
requires about 2.2 times the brace stiffness of the straight beam to reach the
second mode maximum. Similarly, the beam with an imperfection of L/500
requires about 3.5 times the brace stiffness to reach the second mode

maximum.
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Figure 5.1 - Test Results for Beams with Lateral Bracing
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Figure 5.2 - Effect of Initial Imperfections on Lateral Bracing
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5.3 Comparison of Test Results and Design Equations for Lateral Bracing

A total of 10 tests were performed with compression flange lateral
bracing to examine the effects of brace stiffness and initial imperfections.
Figureé 5.3 and 5.4 compare the design equations presented in the previous
section to the test data presented in Chapter 4. These figures include curves
plotted from the design equations both including and excluding the restraint
from the gravity load simulator. The curve labeled "GLS Included" was
calculated by utilizing the gravity load simulator calibration shown in Figure
35,

For cases with no attached bracing, the design equations labeled "GLS
Not Included," closely compare to the test data. This may indicate that the
lateral restraint of the gravity load simulator is being over-estimated at low
load levels. Since the gravity load simulator could only be calibrated without
the vibration devices, it is possible that the actual friction may be significantly
less than the values reported by the calibration.

Since only mid-span bracmg was tested, the stiffness of each brace was
d1v1ded by 75 percent of the beam length to determine the equivalent
continuous brace. A C, factor of 1.30 was used to account for point loading
and the warping term was ignored in the determination of M to include the
effects load height. Imperfections were considered as discussed in Section 5.2.

A 4"x1/4" stiffener was used for all tests presented in Figure 5.3 and
5.4; however, identical results were obtained in additional tests performed
with no stiffener. This indicates that cross-section distortion does not
51gmf1cant1y affect the buckling load of a beam supported solely by lateral

bracing at the compression flange.
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Figure 5.4 - Lateral Bracing, 0.22" Imperfection
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5.4 Effect of Imperfections on Torsional Bracing
As presented in Chapter 2, the critical moment of a beam braced
continuously along the compression flange by a torsional brace is given by the

following,

Mcr = sz + pTEIy (55)

where By = equivalent continuous torsional brace.

Expenmental results presented in Figure 5.5 indicate that initial
imperfections have a significant effect on the effective torsional brace
stiffness. In all tests with bracing, an increase in initial imperfection led to a
decrease in buckling load. Based on test data presented in Figure 5.5,

modifying factors for initial imperfections are applied as follows,

1 1

1
— -1 . (56
TR G6)
= A .7)
1+3000T

Figure 5.6 shows plots of Equation 5.5 for a beam with three different
levels of initial imperfection. The beam with an imperfection of L /1000
requires about 3 times the brace stiffness of the straight beam to reach the
second mode maximum. Similarly, the beam with -an imperfection of L /500

requires about 5 times the brace stiffness to reach the second mode maximum.,
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Figure 5.5 - Test Results for beams with Torsional Bracing
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Figure 5.6 - Effect of Imperfections on Torsional Bracing

65



- 66

5.5 Comparison of Tést Résults and Design Equations for Torsional Bracing

A total of 30 tests were performed with compression flange torsional
bracing to examine the effects of brace stiffness, stiffener size, and initial
imperfections. The stiffeners were made of 11 inch long steel angles bolted
to the web of the test beam directly below the brace attachment points. This
permitted both the stiffener size and vertical location of the stiffener to be
easily adjusted.

Figures 5.7 and 5.8 show test data with various stiffener sizes for tests
with 0.04 inch and 0.22 inch imperfections respectively. In almost every case,
an increase in stiffener size resulted in an increase in buckling load. The
increase in load was most apparent when the stiffener was adjusted SO thét it
was touching the compression flange of the test beam (Figure 5.8).

Undoubtedly, this adjustment led to the highest section stiffness.

Figures 5.9 through 5.17 compare the design equations, including the
modifications for imperfections, to test daté presented in Chapter 4. The.
restraint added to the test specimen by the gravity load simulator was
inclﬁded in the design curves by applying a lateral brace in combination with
the torsional brace. Since only mid-span bracing was tested, the stiffness of
each brace was divided by 75 percent of the beam length, as discussed in
‘Section 2.4, to determine the equivalent continuous brace. A C, factor of 1.30
was used to account for point loading and the warping term was ignored in
the determination of M to include the effects of load height. The effects of

imperfections were included as discussed in Section 5.4.
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Figure 5.7 - Test Results, Torsional Bracing with 0.04" Imperfection

The largest difference between the estimated load using the design
equations, including the gravity load simulator, and the test load (56 perceﬁt),
occurred in tests with no bracing, however, the maximum error for all tests
with bracing was 27 percent for a 4"x1/4" stiffener, 29 percent for a 2"x1/4"
stiffener, and 34 percent for tests with no stiffener.

Figure 5.9 and 5.15 indicate that the design equation is very
conservative for beams with no stiffener. The following factors could have
contributed to the conservativeness of the design equations: 1) An effective
width of 1.5k was used to calculate B, in Equation 2.6, a larger value may
have been appropriate. 2) Since the torsional braces in the experiment
consisted of two braces £ apart, the actual effective width may closer to 1.5k
+ h. A | '

Figure 5.14 and 5.16 indicate that the design equations accurately
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0.22" Imperfection

7
2 6
) s _ Stiffener Size
§ | 3 No Stiffener
3 4+ v 214"
E o3 o 4xijar
Q

2 X  4"x1/4" Touching

14

0 260 2% &% 50

Brace Stiffness (k-in/rad)

Figure 5.8 - Test Results, Torsional Bracing with 0.22" Imperfection

predicted the buckling load for tests with a 4'x1/4" stiffener. Since the
majority of the cross-section stiffness (Equation 2.6) is coming from the
stiffener, these figures indicate that the stiffness contribution from the

stiffener is being estimated accurately.
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Figure 5.9 - Torsional Bracing, 0.04" Imperfection, No Stiffener
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Figure 5.10 - Torsional Bracing, 0.04" Imperfection, 2"x1/4" Stiffener
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Figure 5.12 - Torsional Bracing, 0.16" Imperfection, 4"x1/4" Stiffener

/
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Figure 5.13 - Torsional Bracing, 0.22" Imperfection, No Stiffener
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Figure 5.14 - Torsional Bracing, 0.22" Imperfection, 2"x1/4" Stiffener
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Figure 5.15 - Torsional Bracing, 0.22" Imperfection, 4"x1/4" Stiffener

5.6 Effect of Torsional Brace Location

Theoretically, the attachment height of a torsional brace should have
no effect on the buckling load if the beam web does not distort. Figure 5.16
and 5.17 show values of critical load for tests with torsional bracing placed on
the compression flange, tension flange, or split evenly between the
compression and tension flanges (combined bracing). Figure 5.16 and 5.17
show that the combined bracing produced a slightly higher critical load for
beams with no stiffener, however, the beam with a 4"x1/4" and a brace
stiffness of 175 k-in/rad also showed an increase in critical load. Based on
these tests, the brace locatioh did not significantly affect the éritical load

regardless of the cross-section stiffness of the test beam.
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Figure 5.16 - Torsional Brace Location, 0.16" Imperfection
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Figure 5.17 - Torsional Brace Location, 0.22" Imperfection



74
5.7 Forced Imperfections
In the experiments, two types of imperfections were tested; natural
imperfections and forced imperfections. Since a natural imperfection requires
ecluilibriﬁm of internal stresses and a forced imperfection requires equilibrium
with an applied external reaction, there is no theoretical basis for assuming
that both types of imperfection would have the same impact on the effective
brace stiffness.
Based on Figure 5.18, a forced imperfection has an effect similar to a
natural imperfection. Since lateral-torsional buckling involves both a twist

and a lateral displacement, the magnitude of initial twist may also have an
effect on the brace stiffness.

7 -

6 Impetfecti
,a F pe on
g 5 . N % : R ERRRLAS &2 0' 12” FM

X ::l: X lx % ‘n \ ” ! .
E » N 0.22* Natural
§ SIS B3 031" Forced
e ‘

» 3 1 l!,‘lll,‘l XX X $
= SIS
Q ]

2 i lll 3 xg: :: E)(

1 s

0 A Potetele o 2

175 k-infrad Brace - 4"x1/4” Stiffener

Figure 5.18 - Forced Initial Imperfections



Chapter 6 Summary and Conclusions

6.1 Summary of the Invesﬁgation |

The purpose of the investigation was to evaluate the effects of
intermediate lateral and torsional bracing on the lateral-torsional buckling of
steel beams. Design equations were developed to determine the critical load
for beams braced by lateral and/ of torsional bracing.

The effects of brace stiffness, brace location, and stiffener size were
studied both experimentally and analytically. Since the finite element
program cannot solve problems with initial imperfections, the effects of
imperfections were studied only with the experimental program. The design
equations are presented and compared to finite element solutions for straight

beams in Chapter 2 and are compared to experimental results in Chapter 5.

6.2 Conclusions

For the cases examined, the design equationsA presented give an
adequate determination of the buckling strength of the member when
corrections for cross-section distortion and initial imperfections are performed.
For most tested cases, the critical load given by the design equatioris was less
than or equal to the test load.

Both the analytical and experimental studies indicate that a slender
beam web can lead to a substantial decrease in buckling strength. In almost
every tested case, an increase in stiffener size resulted in an increase in
buckling strength. The increase in buckling strength was most apparent when
the stiffener was positioned so that it was touching the compression flange of

the test beam.
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The experimental program indicated that initial imperfections have a
significant effect on buckling strength. The design equations were first
verified for straight beams using the BASP program. After these verifications
were made, a modifying factor for imperfections was applied so that the
design equations matched the experimental data. Many of the tests were
performed with an imperfection of only 0.04 inches thus giving an indication

of the validity of the design equations for nearly straight beams.

" 6.3 Recommendations |

The buckling strength of beams with bracing can be accurately
evaluated using the design equations summarized in Appendix B. In general,
the equivalent continuous brace can be determined by summing all point-
braces on the span and dividing by the span length.. For beams that are
braced with a single lateral or torsional brace at mid-span, the equivalent
continuous stiffness can be determined by dividing the single-brace stiffness
by 75 percent of the span length. N

All calculations of buckling strength should include the effects of cross-
section distortion and initial imperfections. When stiffeners are required at
torsional brace locations they should be attached so that they are in contact
with the flange being braced. .

For beams within a sweep tolerance of L /500, the following reduction
factors for imperfections can be used in lieu of measurements of sweep. The
constant c, should be taken as 0.15 for torsional bracihg and the constant ¢
should be taken as 0.25 for lateral bracing.



Appendix A

Load-Deflection Curves
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Appendix B

Summary of Design Equations
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P2h%a
Lateral Bracing M, = \J (M2 + ——XZ—-) (1 + A)
2m271242
T n°E th
where M_, = TJ EI,GJ + N
p:| Ai -67B,
T ET}
_ mPET,
y - L2
1
cy =
1 + 1500—=

- (B1)

(B2)

(B3)

(B4)

(B5)

99

where E = modulus of elasticity, I_y = weak axis moment of inertia, L = total span length, &
= initial

= distance between flange centroids, B, = equivalent continuous lateral brace, A

imperfection.

Torsional Bracing

1
where B, =
1 + 1
CtBb Bsec
Cc = 1
1 + 3000—=2

1.5ht] t.bl
Boec = 3.32( v, Lbs,

h 12 12

where £, = stiffener thickness, b, = stiffener width, 8, = equivalent continuous torsional brace.

(B6)

(B7)

(B8)

(B9)
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